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A B S T R A C T

The role of extreme rains over Peninsular Florida (PF) in modulating the seasonal rainfall characteristics is
investigated in this study. The paper is motivated on its potential implication on the seasonal predictability of
the hydroclimate of PF by relatively coarse global seasonal climate models. A majority of these climate models
are unable to resolve the weather events like tropical cyclones that produce such extreme rain events. Therefore,
a legitimate question to ask is if this limits the model’s seasonal predictability of the hydroclimate of PF.

In this paper, extreme rain events over PF within a season are defined as days with daily rain amount at or
above the 95th percentile over 39 years from 1979 to 2017 at the grid resolution of the observed rainfall dataset
(0.5° × 0.5°). The thresholds for extreme rain days range from 16 mmday−1 to 36 mmday−1 depending on the
season and the location over PF, while the heaviest rainfall range from 58 mmday−1 to 278 mmday−1. These
extreme rain events occur most often across PF in the boreal summer season followed by the fall season with the
least in the boreal winter season. Our study reveals that removing the days of extreme rain events has the largest
impact on the corresponding seasonal anomalies and daily rainfall distribution in the dry winter season and least
in the wet summer season.

The impact of El Niño and the Southern Oscillation (ENSO) on the extreme rain events was evaluated by
contrasting the differences in the shape and the scale parameters of the fitted Gamma distribution on daily
rainfall in winter/spring seasons during warm and cold phases. Results revealed that the warm ENSO phases
make the tails of the daily rainfall distribution over PF heavier and longer relative to the cold ENSO phases in the
winter and spring seasons. In essence, our study reveals that the extreme rain events that are critical for the
overall seasonal distribution of rainfall over PF in the first half of the year is modulated by large-scale phe-
nomenon (e.g., ENSO). In the latter half of the year (summer and fall), the extreme rain events are not as critical
to the seasonal rainfall anomaly or the overall seasonal distribution of rainfall over PF. Therefore, resolving the
extreme rain events need not be as critical for the seasonal predictability of the hydroclimate of PF.

1. Introduction

Extreme rain events are well known for their potential to lead to
collateral damage and human fatalities. There is considerable interest
to understand these extreme rain events, especially in the US, where
they are known to cause considerable damage (Schumacher and
Johnson, 2005, 2006; Curtis, 2008). For example, Schumacher and
Johnson (2006) examined rain gauge observations east of the Rockies
and outside of Florida over five years (1999–2003) and found that a
majority of the extreme rain events (defined as those that exceed 50-
year recurrence interval) occurred in the month of July. They also es-
tablished that nearly two-thirds of these events were associated with

mesoscale convective systems and about a quarter of the events were
related to synoptic weather systems. In a related study, Chan and Misra
(2010) showed that anomalous wet summer seasons in the southeastern
US is characterized by a greater number of heavy (> 10 mm/day)
precipitation events than anomalous dry seasons. They further in-
dicated that these heavy precipitation events contributed to more than
half the seasonal total rainfall.

There is however an absence of studies that examine the role of
extreme rain events in defining the hydroclimate over Peninsular
Florida (PF), despite the fact that Florida is identified to be a region
greatly affected by landfalling tropical cyclones (Knight and Davis,
2009; Klotzbach, 2011) and high lightning density (Hodanish et al.,
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1997; Lericos et al., 2002) that point to high thunderstorm activity.
Some recent studies have examined the impact of climate change on
rainfall extremes in Florida (Nadarajah, 2005; Wang et al., 2013) but
they still do not fill the void of understanding the contribution of the
extreme rain events on the seasonal hydroclimate of PF.

The strong seasonality of the rainfall in PF is well documented
(Misra and DiNapoli, 2013; Misra et al., 2017; Misra and Bhardwaj,
2020). Ali et al. (2000) examined the spatial–temporal characteristics of
monthly rainfall in central and south Florida and showed that the
variance of the wet season (July) rainfall was far higher than that in the
dry season (January). Similarly, in examining the spatial patterns of
daily and monthly rainfall data in the tri-state area of Alabama,
Georgia, and Florida, Baigorria et al. (2007) found two dominant spa-
tial correlation patterns that suggested frontal type and convective
thunderstorm events, which were characteristic of the dry and wet
seasons, respectively. Keim (1996) analyzed heavy rainfall events (that
produced over 75 mm of rainfall) across a much wider region of the
southeastern United States (from Florida to Texas and North Carolina to
Oklahoma) and concluded that frontal systems, particularly cold fronts,
was the most dominant mechanism that induced heavy rainfall across
the area. Moreover, tropical disturbances and air-mass thunderstorms
were also found to be important, but largely confined to coastal loca-
tions.

A number of studies have examined the seasonal predictability over
Florida, which generally indicate that the winter season has higher and
useful prediction skills while in the summer and fall seasons the models
display relatively poor fidelity (Stefanova et al., 2012; Tian et al., 2014;
Kirtman et al., 2017). However, the current climate models used to
simulate Florida’s climate are comparatively coarse in spatial resolution
(~1° × 1°; e.g. Kirtman et al., 2014; Voldoire et al., 2019) and are
inadequate to resolve the weather systems that produce such extreme
rain events (Iorio et al., 2004; Li et al., 2012). Therefore, it is legitimate
to ask if their seasonal prediction skills over Florida are affected
without resolving some of these extreme rain events.

This paper is motivated to understand the contribution of extreme
rainfall events to seasonal rainfall over Peninsular Florida (PF). We seek
to identify 1) the role of extreme rainfall in modulating rainfall dis-
tributions in the different seasons, and 2) the impact of El Niño and the
Southern Oscillation (ENSO) on extreme rainfall. We examine the im-
pact of ENSO specifically because it is one of the most widely studied
and well known interannual variations (Cane and Zebiak, 1985;
Philander, 1990; Guilyardi et al., 2009; Capatondi et al., 2014) that
impacts PF significantly (Ropelewski and Halpert, 1986, 1987; Bove
et al., 1998; Misra et al., 2012; Nag et al., 2014). Additionally, con-
siderable progress has been made on understanding and improving
ENSO predictability (Guilyardi et al., 2009; Capatondi et al., 2014;
Kumar et al., 2017; Chen et al., 2020).

We hope to provide a better perspective on the potential for sea-
sonal predictability of the hydroclimate over PF from the analysis of the
results of this study. In the following section we describe the datasets
used and the methodology followed by discussion of results in Section
3. Concluding remarks are provided in Section 4.

2. Data and methodology

We use the daily rainfall data from the Climate Prediction Center
(CPC) (Xie et al., 2007; Chen et al., 2008). This rainfall data is available
on a 0.5° × 0.5° grid at daily interval from 01 January 1979 to 22
March 2018 over all continental regions. This dataset uses gauge re-
ports from over 30,000 stations including those from Cooperative Ob-
server network Program (COOP), and other national and international
collections. A quality control is applied on these data collections before
they are merged through an optimal interpolation technique following
Gandin (1965) to construct the global gridded rainfall analysis on

×° °0. 5 (lat) 0. 5 (lon) grid. In comparison to previous CPC products, the
CPC unified daily gauge analysis presents spatial patterns and temporal

changes of precipitation in better agreements with station data (Xie
et al., 2007). Chen et al. (2008) showed that continental US, including
Florida, has the highest density of rain gauges in the world. The mean
station-to-station distance is around 30 km and the bias is less than
|0.5%|. In a comprehensive review of gridded rainfall analysis, Sun
et al. (2018) finds that the largest uncertainties of gridded analysis are
found in complex mountain areas and in regions of sparse data coverage
(e.g. northern Africa, polar latitudes, oceanic regions). In contrast, the
flat terrain and relatively high density of rain gauges ensure a higher
fidelity of the rainfall analysis over Florida.

For this study we use the data only over PF with a spatial range of
84.25°W to 79.75°W and 24.75°N and 31.25°N. We examined the im-
pact on the statistical moments and the daily rainfall distribution from
the extreme rain events to provide a complete picture on the sensitivity
of the extreme rain events on seasonal rainfall. The methodology is
explained in four subsections that dwell on climatology, defining ex-
treme rain events, fitting a Gamma distribution to the daily rainfall in
the season and the significance test.

The methodology follows a textbook type analyses to provide in-
sight to the daily rainfall distribution within the four seasons of the year
over PF. This is followed by a sensitivity analysis to specifically examine
the role of extreme rain events on defining the seasonal hydroclimate
and its variations over PF.

2.1. Climatology

To examine climatological characteristics of the statistical moments,
the 39-year mean rainfall was calculated for each season and its stan-
dard deviation, skewness, and kurtosis were computed based on this
mean rainfall. The skewness (s) and kurtosis (k) were computed as:
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where ri is the daily rainfall and
−
r is the seasonal mean rainfall.

2.2. Definition of extreme rainfall

Extreme rainfall days were defined when the daily rain rate was at
or exceeded the 95th percentile for each season from 1979 to 2017
(Suppiah and Hennessy, 1998; Haylock and Nicholls, 2000; Klein Tank
and Konnen, 2003). But instead of computing this percentile over only
wet days (> 0.1 mmday−1) of the season, we took into account all days
including dry days to avoid bias stemming from any changes to the
frequency of wet days (e.g., Schär et al., 2016). To compute the
thresholds, the daily rain rates for more than 3500 days for each grid
were ranked in descending order, with the days of equal rain rate be-
longing to the same rank. Then the rain rate at the 95th percentile was
defined as the threshold for extreme rainfall. In order to understand the
impact of these rain events on the seasonal characteristics and daily
rainfall distribution, we created a “modified” dataset where the rain
days at or exceeding the 95th percentile threshold were zeroed out. All
moments including the mean, standard deviation, kurtosis, and skew-
ness were calculated for both the original and the modified dataset.
Furthermore, the corresponding differences of these moments between
the original and the modified data was also evaluated. The boot-
strapping method (described in subsection d) was used to test the dif-
ferences at 95% significance level.
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2.3. Fitting daily rainfall with Gamma distribution

We also analyzed the frequency distribution of precipitation by
fitting empirical functions to the Probability Density Function (PDF) of
the daily precipitation over PF. Precipitation amounts are left-bounded
by zero and skewed to the right. There are a lot of distributions that
meet these two requirements, and Gamma distribution stands out with
its versatility of shapes. Though in some regions, Gamma distribution
doesn’t work well (Vlček and Huth, 2009), it has been widely applied to
daily or monthly precipitation time series to study regional precipita-
tion characteristics (Wilks, 2006; Becker et al., 2009; Husak et al.,
2009).

The Gamma distribution PDF, for a given variable × (∈ r) is given
by:
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The shape and scale parameters need to be estimated from the data
series. The maximum likelihood estimators (MLE) developed by Thom
(1958) is used. The estimators ̂α and β are calculated as follows:
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where n is the number of values in x, and A is the sample statistic,
which is the difference between the logs of the arithmetic and the
geometric means (Wilks, 2006). Since the sample statistic A contains
natural log, zero values should be discarded from original data series.
We determine the threshold for a wet day, t, as 0.1 mm/day, given that
the measurable rain amount at an observation station is typically
0.1 mm (Groisman et al., 1999). At each grid, the frequency of wet
days, pw, for each season is therefore defined as number of wet days
divided by the number of days in the season in the 39-year period. The
frequency of wet days in PF is usually larger than 0.3 (not shown).

An example of fitting Gamma distribution to the wet days at one
grid is provided in Fig. 1. A wet day threshold of te = 1 mmday−1 was
applied to better present the histograms. In removing the dry days, a
zero frequency value is implied for the [0, te] interval. If we fit a Gamma

distribution over such a rainfall distribution, the fitted PDF would start
with zero, which creates a right-skewed, inverted-U shape function with
a local maximum at x = te (Fig. 1a). To avoid such bias, we fit the
Gamma distribution to (x − te). The difference of fitting to an unshifted
and a shifted data series is shown in Fig. 1. As a consequence of shifting
the distribution, the shape of the fitted PDF changes to an exponential
decay (Fig. 1b), and the shape parameter drops from larger than 1
(Fig. 1a) to below 1 (Fig. 1b). It should be noted that the shape para-
meter in the Gamma distribution is a measure of the skewness of the
distribution with smaller values of α representing higher skewness in
the distribution. It shows that, fitting the wet day data directly without
dealing with the dry day frequency will lead to exaggeration of the
shape parameter, which is the possible reason for a shape parameter of
larger than 1 over most of US in Becker et al (2009).

Goodness-of-fit is tested using the Chi-square test following Wilks
(2006). The null hypothesis H0 is that the sample data at each grid is
drawn from the estimated Gamma distribution. In this study, the
sample data refers to the wet day data. The data is divided into unequal
classes or bins, and each bin is ensured to have at least 5 values. The
test statistic is computed as:
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where (# Observed) and (# Expected) correspond to the actual and
computed counts of data values falling into each bin. The # Expected is
equal to the cumulative probability (pw) in that bin multiplied by the
sample size = ∙pw n, where, n is the number of wet days. A large χ2

suggests that at least a few of the bins exhibit large discrepancies be-
tween the expected and observed counts, and that the fit is not good
enough, leading to a rejection of the null hypothesis. The rejection level
is determined by the degrees of freedom and the significance level. In
this study, we use a rejection level of 0.05, meaning that we reject the
null hypothesis at locations with p-values less than 0.05. The degrees of
freedom of the time series at each grid point is estimated by the typical
duration of synoptic scale systems, which is ~4 days (Holton and
Hakim, 2013). Typically, in the summer season and in other seasons
over PF when the duration of precipitation events is shorter (Bastola
and Misra, 2013), the actual degrees of freedom will be larger than
4 days. Therefore, our choice of 4 days for the degrees of freedom serves
as a more conservative estimate of χ2.

2.4. Significance tests

The differences of the higher moments and the Gamma distribution

Fig. 1. An illustration of the two ways in
fitting a Gamma distribution to daily pre-
cipitation at one specific grid point located
over PF (83.75°W, 30.25°N). Fitting a
Gamma distribution in which (a) a threshold
to define wet day (as days with precipitation
amount>1 mm/day) is used to construct
the histogram that artificially creates a bin
with zero frequency in the precipitation in-
terval between 0 and 1 mm/day and (b) the
histograms are shifted (x-1) so that the first
bin with zero frequency that appears in (a) is
not included. The shape (α) and scale (β)
parameters are estimated by MLE (Thom,
1958).
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parameters before and after removing the extreme rain events were
compared and tested by the bootstrapping method (following McClave
and Dietrich (1994) and Efron and Tibshirani, 1993). For each grid
point in each season, the number of extreme rain days were defined by
the 95th percentile thresholds. After randomly deleting the same
number of days in one season, we calculated the higher moments and
the Gamma distribution parameters of the resampled seasonal rainfall
data. The differences of these higher moments and the Gamma dis-
tribution parameters of the resampled rainfall data from the original
sample were computed. This process was repeated for 200 times. Then
the differences were ranked in descending order to determine the upper
2.5% and the lower 2.5% thresholds for the significance test. We
claimed the statistical significance of the sensitivity of the extreme rain
events on the higher moments or the distribution parameters at the 5%
significance level when their rank fall either in the upper or in the lower
2.5% of the threshold.

We also examined the impact of El Niño and the Southern
Oscillation (ENSO) phases on the Gamma distribution parameters of the
daily rainfall in the boreal winter and spring seasons. The warm and
cold ENSO phases were defined by a threshold of± 0.5 °C for the
Oceanic Niño Index (ONI) from Climate Prediction Center. 13 warm
December-January-February’s (DJF’s) and 13 cold DJF’s, 7 warm
March-April-May’s (MAM’s) and 6 cold MAM’s were identified. We fit
the Gamma distribution to the daily rainfall distribution in each of these
seasons separately. Bootstrapping method is used to test the differences
of the shape and the scale parameters between the warm and cold
phases of ENSO at the 5% significance level, similar to the process
mentioned before.

3. Results

3.1. Seasonal climatology of rainfall over PF

The seasonal mean climatological rainfall in Fig. 2a-d clearly in-
dicate that PF receives the most rainfall in the June-July-August (JJA)
season followed by that in the September-October-November (SON)
season. It is interesting to note that Gulf coast of PF receives the most
rainfall in the JJA season (Fig. 2c) while in the SON season the Atlantic
coast and the southern tip of PF receive the most rainfall (Fig. 2d). The
December-January-February (DJF) season is the driest, especially, in
South Florida (Fig. 2a) followed by the March-April-May (MAM)
season. The seasonality of the rainfall north of 30°N over PF is relatively
weak with comparable seasonal rainfall in DJF, MAM, and SON sea-
sons, although, in JJA there is a visible annual peak. The corresponding
standard deviation of the seasonal rainfall in Fig. 2e-h indicate that the
JJA season displays the most variability across PF. The Atlantic coast
and the southern tip of PF display relatively strong variability in the
SON season (Fig. 2h) while in the DJF (Fig. 2e) and MAM (Fig. 2f)
seasons the variability is stronger north of 28°N.

The skewness of the seasonal rainfall in Fig. 2i-l indicate that the
DJF season is most positively skewed, which is understandable given
that it is the driest season, which reduces the seasonal mean rainfall and
deviations about this mean are amplified in the skewness. However, the
MAM season, which was found to be also a dry season (Fig. 2b), shows
far less skewness than the DJF season. In fact, the skewness of the daily
rainfall in the rest of the seasons other than DJF is comparable. This
potentially suggests that the tails of the daily rainfall distribution in
these seasons are not relatively as heavy and or long as the DJF season.
This may however have to be tempered with the fact that the heaviest
rain rates occur in JJA season but is not reflected in the skewness be-
cause the seasonal mean rain is comparatively higher than in the DJF
season. The kurtosis in Fig. 2m-p also indicate the DJF season with the
largest values while it is comparable in the rest of the seasons. This
supports the idea of relatively high frequency of dry days in the DJF
season that result in a higher peak in the daily rainfall distribution of
the season. Additionally, the higher kurtosis in the DJF season

compared to other seasons also suggests a heavier and or a longer tail in
the daily rainfall distribution of the DJF season.

3.2. Extreme rainfall over PF

As noted before the selection of extreme rainfall events is based on
daily rainfall at or exceeding the 95th percentile threshold with the
percentile computed by including all days of the season (including dry
days). The climatological rain rate at the 95th percentile threshold for
all four seasons is shown in Fig. 3a-d. Interestingly, Fig. 3a-d show that
the threshold of rain rate at the 95th percentile is largest in the DJF and
the MAM seasons, especially, north of 30°N with comparatively much
lower thresholds in the JJA and the SON seasons. This result is partially
a consequence of the JJA and the SON seasons having relatively more
rainy days while DJF and MAM seasons have more dry day events.
Since we assign the same rank for days with equal rain rate the
threshold for the 95th percentile gets shifted to higher values when the
rank order is shorter as in the dry seasons owing to a number of dry
days. In south Florida, the threshold of the 95th percentile event is
comparable in all four seasons. As a consequence, the meridional gra-
dients of the threshold of the rain rates at the 95th percentile is
strongest in DJF followed by that in the MAM season and weakest in
JJA followed by that in the SON season (Fig. 3).

The percentage of days in the season when the daily rain rate ex-
ceeds the 95th percentile threshold is shown in Fig. 4a-d. The extreme
rain events are most prevalent across PF in the JJA season with south
Florida showing the highest frequency, followed by the SON season,
with a relatively moderate decrease in the frequency over southwest PF
and a larger decrease towards north of 28°N. The DJF season (Fig. 4a),
followed by the MAM season (Fig. 4b), has the least frequency of the
extreme rain events.

In order to understand the impact of these extreme rain events on
the seasonal rainfall, we created a new dataset, wherein, we zeroed out
the rainfall on days of the extreme rain events. We then examined the
differences of these various statistics of this modified data series with
the original data set to assess the impact of the extreme rain events on
the seasonal rainfall over PF. The climatological seasonal mean rainfall
differences (shown as original-modified) between the two data sets in
Fig. 5a-d clearly shows that in the absence of the extreme rain events,
the seasonal mean rainfall declines in a statistically significant manner
across PF in all four seasons. Furthermore, the differences in Fig. 5e-h
reveal that the variability of the seasonal rainfall across PF as defined
by the standard deviation also declines with the absence of the extreme
rainy days. Likewise, the differences in skewness (Fig. 5i-l) and kurtosis
(Fig. 5m-p) also show a significant decrease when extreme rainy days
are absent. The relatively large differences of these metrics in the dry
seasons (DJF and MAM) indicate the relative importance of these ex-
treme rain events on the mean state of the rainfall. In the MAM season
when both skewness (Fig. 5j) and kurtosis (Fig. 5n) increase between
Tampa and Orlando in the modified data series, it suggests that the
mean state of the rainfall decreases considerably from the absence of
these extreme rain events, which results in higher skewness and kur-
tosis in the modified dataset yielding a negative difference in Fig. 5j and
n. In contrast, the relatively moderate changes to the skewness and
kurtosis in the rest of the year (JJA and SON seasons) suggest the po-
tential importance of the light to moderate rain events relative to the
extreme rain events to the seasonal total.

These results have important implications on the seasonal predict-
ability of the hydroclimate over PF. For example, it is well known that
PF has the highest density of landfalling tropical cyclones in the con-
tinental US (Knight and Davis, 2009; Klotzbach, 2011). Therefore, one
could claim that such extreme rain events could have an implication on
the seasonal hydroclimate over PF during the Atlantic hurricane season.
Yet when ENSO has a strong influence on the landfalling tropical cy-
clones over PF (e.g., Klotzbach, 2011; Misra et al., 2012; Kirtman et al.,
2017) there is no discernible influence of ENSO on the seasonal
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precipitation anomalies of either the summer or the fall seasons over PF
(Misra and DiNapoli, 2013; Kirtman et al., 2017). Our results corro-
borate these findings further in suggesting that the extreme rain events
as isolated by those events ranked at or above the 95th percentile
(which include these infrequent landfalling tropical cyclone events over
PF) do not significantly contribute to the overall rainfall distribution of
the corresponding season.

3.3. Fitting the Gamma distribution to understand characteristics of extreme
rain

In order to put the findings of the previous sub-section on a more
theoretical footing and to understand the contribution of the extreme
rain events to the seasonal rainfall total in an alternative manner, we

examined the characteristics of the fitted Gamma distribution to the
daily rainfall distribution in each of the four seasons. As mentioned
earlier, Gamma distribution is a two parameter frequency distribution
described by the shape and the scale factors. The shape and scale factors
inform the characteristics of the fitted Gamma distribution such that,
shape dominated distributions suggest a weaker contribution of the
extreme rains to the seasonal total vis-à-vis a scale dominated dis-
tribution that would imply a greater importance of the extreme rains to
the seasonal total (Becker et al., 2009).

In Fig. 6a-d we show the shape parameter of the fitted gamma
distribution for the daily rainfall of the four seasons. Similarly, Fig. 6e-h
displays the corresponding scale parameter of the gamma distribution.
Grids that don’t pass the Chi-square test are masked out. There are
many interesting observations from these figures that one could make

Fig. 2. The seasonal climatological (top row: a-d) mean rainfall (mm day−1) and its corresponding (2nd row: e-h) standard deviation (mm day−1), (3rd row: i-l)
skewness and (4th row: m-p) kurtosis of the four seasons (DJF, MAM, JJA, and SON) based on daily gridded rainfall analysis from 1979 to 2017 (Xie et al., 2007;
Chen et al., 2008).
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based on the spatial gradients of the shape and the scale parameters of
the gamma distribution, including:

i) Gamma distribution is a good fit to daily rainfall distribution in all
four seasons across most parts of PF.

ii) The daily precipitation in the DJF season shows a distribution with
low shape parameter (pointing to comparatively larger skewness)
that is evenly distributed across PF (Fig. 6a). At the same time, we
observe in DJF that over northern Florida (north of 28°N) the dis-
tribution is scale dominated (suggesting heavier and or long tails)
with their largest values appearing north of 30°N (Fig. 6e).

iii) Like in the DJF season, the shape parameter is small and uniformly
distributed across PF in the MAM season (Fig. 6b). The distribution
is scale dominated especially in northern parts of PF, which points
to the significance of the extreme rain events to the seasonal total.

iv) In the JJA season the shape parameter assumes a larger value than
in the previous two seasons (Fig. 6c) while the scale parameter
diminishes (Fig. 6g), which connote that extreme rain events are
comparatively less important and light to moderate rain rates
contribute significantly to the seasonal total.

v) In the SON season the daily distribution of rainfall begin to revert to
relatively smaller values of the shape parameter across PF (Fig. 6d)
and larger values of the scale parameter (Fig. 6h) showing the
growing importance of the extreme rain events on the seasonal
total.

Now, we re-fit the gamma distribution on the modified data series
where in the rain events at or exceeding the 95th percentile threshold is
zeroed out to assess the importance of such events on the seasonal total
(Fig. 7). The following inferences on the impact of the extreme rain

Fig. 3. The cutoff threshold for rain rates (mm day−1) that are at or above the 95th percentile for a) DJF, b) MAM, c) JJA, and d) SON.
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events on the seasonal totals and the rainfall distribution in the season
can be made from Fig. 7:

i) In each of the seasons the shape parameter increases, and the scale
parameter declines in the modified data series relative to the ori-
ginal data. This suggests that the extreme rain events contribute
significantly to the seasonal total in all four seasons across PF.

ii) Between the DJF and the MAM seasons, the impact of removing the
extreme rain events is slightly higher in the MAM season relative to
the DJF season, with larger changes observed to the shape and scale
parameters in the MAM season.

iii) Between the JJA and the SON seasons, the shape parameter shows a
larger impact in the former compared to the latter season with the
JJA season assuming larger values of the shape parameter in the
modified data series, which imply the growing influence of the light
to moderate rain events on the seasonal total. However, in the SON

season the scale parameter shows a larger reduction compared to
the JJA season suggesting the diminishing influence of the extreme
rain events on the seasonal total.

Bastola and Misra (2013) clearly showed that diurnal variations
contribute significantly to seasonal rainfall over PF throughout the
year. In JJA and SON seasons, diurnal variations explain nearly 50% of
the total seasonal variance in parts of PF (Carbone and Tuttle, 2008;
Bastola and Misra, 2013). These diurnal variations of precipitation are
associated with sea-breeze type of thunderstorms (Blanchard and
Lopez, 1985; Hodanish et al., 1997). Therefore, if the bulk of the sea-
sonal rainfall comprises of such rain events, it is incumbent of the
seasonal prediction models to simulate these diurnal variations with
reasonable fidelity. However, the timing and magnitude of the diurnal
variations is a challenging issue for climate models (Dai and Trenberth,
2004; Lewis and Karoly, 2013; Yin and Porporato, 2017; Wang et al.,

Fig. 4. The percentage of days in a) DJF, b) MAM, c) JJA, and d) SON when daily rain rates were at or above the 95th percentile.
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2018). This issue is further accentuated over PF because the sea breeze
events require much higher spatial resolution than the current climate
models offer (Pielke, 1974; Anthes et al., 1982; Tijm et al., 1999). Our
results show that extreme rain events make a relatively weak con-
tribution towards the seasonal distribution of rainfall in the summer
and fall seasons. The distribution of summer rainfall is not sensitive to
extreme rain events, which are primarily produced by tropical cyclones.
Thus, the results from our study suggest that the absence of resolving
the tropical cyclones in our current climate models (e.g., Kirtman et al.,
2014, Rebecca et al., 2017) may not be as detrimental for the seasonal
simulation of summer rainfall over PF. However, these global climate
models continued to display poor prediction skills in summer and fall

seasonal rainfall over PF, suggesting that there are other responsible
factors, like the poor simulation of the diurnal variations.

3.4. The role of El Niño and the Southern Oscillation (ENSO)

The shape and the scale parameters for the warm DJF and MAM
seasons, and the corresponding differences between the warm and the
cold phases for the two seasons are shown in Fig. 8. The Gamma dis-
tribution parameters for the warm DJF (Fig. 8a and b, respectively) and
for the warm MAM (Fig. 8c and d, respectively) seasons are quite si-
milar to the corresponding shape and scale parameters fitted over all
seasons in Fig. 6. In comparing the corresponding differences of this

Fig. 5. The difference in the seasonal climatological (top row: a-d) mean (mm day−1) and its corresponding (2nd row: e-h) standard deviation (mm day−1), (3rd row:
i-l) skewness and (4th row: m-p) kurtosis of the four seasons (DJF, MAM, JJA, and SON) of the modified rainfall data (wherein the days with rain rates at or above the
95th percentile is zeroed out) from the original data. The dots indicate that the (original-modified) differences are statistically significant at 95% confidence interval
according to the bootstrap method.
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distribution of shape and scale parameters with the cold ENSO phase
seasons (Fig. 8e-h), we observe that in cold ENSO phases the scale
parameter undergoes uniform reduction across PF in both seasons,
while the changes to shape parameter is less conclusive. In other words,
warm phase of ENSO tends to make the tails of the daily rainfall dis-
tribution heavier and or longer relative to the cold phase of ENSO.
Given the importance of the extreme rain events in the daily rainfall
distribution of the DJF and MAM seasons as revealed in the previous

discussions, Fig. 8 further suggests that the ENSO forced signal in sea-
sonal rainfall changes over PF can best be captured when these extreme
rain events are resolved.

These results are significant in the context of the seasonal predict-
ability of the hydroclimate of PF. As Kirtman et al. (2017) suggested,
the remote ENSO forcing on the winter and spring seasonal climate over
PF has a huge bearing on the fidelity of the seasonal prediction skills of
the global models. Here, we find that ENSO also has a bearing on the

Fig. 6. The Gamma distribution (a, b, c, d) shape and (e, f, g, h) scale parameters fitted to the daily rainfall distribution in (a, e) DJF, (b, f) MAM, (c, g) JJA, and (d, h)
SON seasons. The shaded values indicate that the Gamma distribution passes the goodness of fit according to the chi-squared test at 95% significance level except for
the grey areas in (c), (g), (d) and (h).

Fig. 7. The difference of Gamma distribution (a, b, c, d) shape and (e, f, g, h) scale parameters fitted to the modified daily rainfall distribution (original - modified),
where in rain events at or exceeding the 95th percentile threshold is zeroed out in (a, e) DJF, (b, f) MAM, (c, g) JJA, and (d, h) SON seasons. The shaded values
indicate that the Gamma distribution passes the goodness of fit according to the chi-squared test. The dots indicate that the differences are statistically significant at
95% confidence interval according to the bootstrap method.
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extreme rain events over PF in the DJF and MAM seasons and that such
extreme rain events have a significant influence on the total rainfall
distribution across the corresponding seasons. Therefore, our results
suggest that these global seasonal climate models that display reason-
able seasonal prediction skill over PF in these dry seasons are also re-
solving in all likelihood the variations in the frequency of these extreme
rain events.

4. Conclusions

This paper has examined the daily rainfall distribution across PF in
all four seasons. We examined the daily rainfall distribution over PF
both by computing well known statistical metrics (e.g. skewness and
kurtosis) and also by way of looking at the shape and scale parameters
of the fitted Gamma distribution to the daily rainfall spread across the
seasons.

Our results indicate that extreme rain events over PF are relatively
more important to the seasonal total in the drier seasons of DJF and
MAM, when the seasonal mean rainfall is small. This result is en-
couraging in that the extreme rain bearing systems in the boreal winter
are usually from the synoptic frontal systems over this region
(Ropelewski and Halpert, 1986, 1989; Kiladis and Diaz, 1989; Schmidt
et al., 2001), that could be potentially resolved in relatively coarse
climate models. As this study finds, these extreme rain events are
strongly modulated by ENSO in the winter and spring seasons. There-
fore, the global models, which display reasonable seasonal prediction
skill in depicting ENSO teleconnections will likely pick this signal.
However, in terms of long-term climate projections the uncertainty of
projecting ENSO features like its frequency, duration, spatial structure
in the equatorial Pacific Ocean in a future warm climate contribute to
the uncertainty of extreme rain events and thereby the seasonal rainfall
in the dry season over PF.

In the summer and fall seasons, PF has some of the largest fraction
of landfalling tropical cyclones in the continental US. Yet we observe
that the skewness and kurtosis of the daily rainfall distribution in the
JJA and the SON seasons are relatively less modulated by the removal
of these extreme rain events than in the drier DJF and MAM seasons.

The seasonal distribution of rainfall in these seasons is largely made of
light to moderate rain events that are related to diurnal variations (or
sea-breeze type thunderstorm) events (Keim, 1996; Baigorria et al.,
2007; Bastola and Misra, 2013). Therefore, the lack of resolving the
tropical cyclones in coarse global climate models may not be detri-
mental to its seasonal prediction skill over Florida. However, unless the
climate prediction models improve their simulation of light to moderate
rain events there is little hope in improving the seasonal prediction
skills or reducing the uncertainty in long-term climate projections of the
summer and fall seasons hydroclimate over PF.

5. Data availability

The gridded rainfall dataset used in this paper can be publicly ac-
cessed from https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.
globalprecip.html.

The Oceanic Niño Index (ONI) is from Climate Prediction Center on
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ONI_v5.php.
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